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Abstract

We study guantum impurity models as a platform for guantum thermometry. In particular we study how strongly correlated many-body

phenomena and the energy structure of the bath influence the impurity probe temperature sensitivity. We find that probe-environment
coupling mediated through an Ising interaction results in temperature sensitivity that is invariant to environment details and analogous
to a free spin at thermal equilibrium. In contrast, coupling via spin-flip terms which manifests the Kondo effect yields sensitivity that is
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For the estimation of temperature using a probe at thermal equilibrium with
some environment, the probe sensitivity is given by the thermal Fisher
information [1],
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The thermal Fisher information can be expressed in terms of the impurity
magnetization,
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We explore two modalities of impurity-environment coupling [2],
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Fig. 1: Ising impurity and temperature
sensitivity for and strong field strengths.

We use the quantum signal to noise ratio to characterise a probes
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The Kondo impurity model has Hamiltonian,

The Ising Impurity model has Hamiltonian,

w2 s - Hy = Hieaa + J*S35% + J'x + B (S - S)
Ap = Hioos + 75385 + B (85 + 57 ) ® C® oo c
¢ P « ™ [ with x = S7 S5 + 57 5% describing spin-flip
W|th.lsmg il J7 fRg netle field 0‘ ® 0 terms that induce strong impurity-bath
applied to bath and impurity B, and lead ® ¢ ¢ correlations at low temperature, resulting in

structure Hieqq = Zk’a €kCrp Cho -

at the model [3] and the

Ising impurity model are identical and that
probe sensitivity is invariant to the environment
whose temperature we are probing.
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Fig. 2: Temperature at which the Ising
iImpurity sensitivity peaks. Inset: Maximum
temperature sensitivity of Ising impurity.

Using a mean field theoretic approach (MFT), one can make the connection

between the Ising impurity model and

the free spin model more rigorous.

The probe temperature sensitivity is related to its magnetization, which from

MFT reads,
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The Kondo impurity model has a sensitivi
that is characteristic of the environment that is

being probed.
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Fig. 7: Max impurity temperature sensitivity in
a metallic and twisted bilayer graphene
environment. Guide to eye: Max temperature
sensitivity for a two-level probe.
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Fig. 8: Rescaled temperature sensitivity for
flat band Gaussian, and

DOS in the universal regime B <<
TK.

the formation of a many-body singlet state.

The Kondo model is a strongly correlated many-body problem
which is non-perturbative and cannot be approached using a
Y ——mean field theory. Instead the model is solved using the

Numerical Renormalization Group approach [4] to obtain the
magnetization exactly.
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Fig. 3: Maximum Kondo impurity temperature Fig. 4: Temperature of peak sensitivity for Kondo
sensitivity for Jo = {0.07, 0.1, O.15, 4 } with a impurity probe for J1t ={0.07, 0.1, 0.15, , 0.5} with a
metallic DOS. metallic DOS.
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Fig. 5: Kondo impurity probe sensitivity rescaled by Fig. 6: Kondo impurity probe sensitivity for B > Tk at
the ratio of applied field and Kondo temperature for weak and strong field B. Inset: Sensitivity as a function
B << Tk at and strong field B. Inset: Sensitivity as of ratio of temperature to bandwidth.

a function of ratio of temperature to bandwidth.
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